CHAPTER SIX

BINARY OPERATION

Operation rules in ordinary Algebra:

These operational rules are

1)Closure:

- A statement is opened when no limitation is placed on it, and closed when a limitation is placed on it.
- For example Kofi is a boy is an opened statement, but Kofi is a boy in the class is a closed statement.
- Also *x* is a number is an opened statement, but *x* is a number less than 10 is a closed one.

2) Commutative law:

- a) If a + b = b + a, then the given operation which is + or addition is commutative.
- b) If $a \times b = b \times a$, then the given operation which is \times or multiplication is commutative.
- c) Lastly if a Δ b = b Δ a, then the given operation which is Δ is commutative.

Q1) Using the numbers 3 and 4, determine whether or not addition is commutative.

N/B L.H.S = Left hand side and R.H.S= Right hand side. Soln.

For addition (+) to be commutative, then 3+4=4+3.

Consider the L.H.S i.e 3 + 4 = 7.

Consider the R.H.S i.e 4+3=7.

Since L.H.S = R.H.S, then addition is commutative.

Q2) Using the numbers 3 and 4, determine whether or not subtraction is commutative.

Soln.

If subtraction is commutative, then 3 - 4 = 4 - 3.

Considering the L.H.S, 3 - 4 = -1.

Considering the R.H.S, 4 - 3 = 1.

Since the L.H.S \neq R.H.S

i.e L.H.S is not equal to the R.H.S, then subtraction is not commutative.

Q3) Using the numbers 3 and 4, determine whether or not multiplication is commutative.

Soln.

For multiplication to be commutative, then $3\times4 = 4\times3$.

 $L.H.S = 3 \times 4 = 12.$

 $R.H.S = 4 \times 3 = 12.$

Since L.H.S = R.H.S, then the operation which multiplication is commutative.

3) Associative Law:

- a) If (a + b) + c = a + (b + c), then addition is associative.
- b) If $(a \times b) \times c = a \times (b \times c)$, then multiplication is associative.
- c) If (a * b) * c = a * (b * c), then the operation which is *, is associative.
- Q1) Using the numbers 2, 3 and 5, determine whether or not addition is associative.

Soln.

If + (addition) is associative, then (2+3) +5 = 2 + (3+5).

$$R.H.S = 2 + (3+5) = 2 + 8 = 10$$

Since the L.H.S = R.H.S, then addition is associative.

Q2) Using 2, 3 and 5, determine whether or not multiplication is associative.

Soln.

If multiplication is associative, then $(2\times3)\times5=2\times(3\times5)$.

L.H.S =
$$(2\times3) \times 5 = 6\times5 = 30$$

$$R.H.S = 2 \times (3 \times 5) = 2 \times 15 = 30$$

Since L.H.S = $R.H.S = \times$ (multiplication) is associative.

Q3) Using 2,3 and 5, determine whether or not subtraction is associative.

<u>Soln</u>

If subtraction (-) is associative, then (5 - 3) - 2 = 5 - (3 - 2)

$$L.H.S = (5-3) -2 = 2 - 2 = 0$$

$$R.H.S = 5 - (3 - 2) = 5 - 1 = 4$$

Since R.H.S \neq L.H.S, then (–) or subtraction is not associative.

NB: $a \times (b + c)$ is the same as a (b + c)

4) Distributive Law:

- If a (b + c) or a \times (b + c) = ab + ac, then multiplication is said to be distributive over addition (+), or multiplication is said to be distributive with respect to addition.
- Also if a (b Δ c) = ab Δ ac, then multiplication is distributive over Δ , or multiplication is distributive with respect to the operation Δ .

An operation:

- * An operation is a symbol, with a given meaning.
- * For example if a*b = 2a+b, then the symbol * becomes an operation, and a*b means that take twice of a and add it to b.
- * Also given that a Δ b = a² + b², then the symbol Δ becomes an operation, and a Δ b means add a squared to b squared.
- * Other examples of operation which we are familiar with are addition (+), subtraction (-), division (÷) and multiplication (×).

* Lastly any symbol can be used to represent an operation, provided its meaning is given.

The Identity Element:

The identity element of a given operation has no effect on that given operation.

- * For example the identity element of addition is 0 (zero), since any number added to zero gives us the same number. (i.e zero has no effect on addition).
- * For examples are

$$3 + 0 = 3$$

$$5 + 0 = 5$$

$$2 + 0 = 2$$

* The identity element of multiplication is one, since one has no effect on multiplication.

$$4 \times 1 = 4$$

$$5 \times 1 = 5$$

* Therefore assume Δ to be a given operation, and if i.e = the identity element of Δ , then

$$2 \Delta i.e = 2$$

$$4\Delta i.e = 4$$

$$6\Delta$$
 i.e = 6

Q1)

Δ	1	2	3	4
1	4	1	7	2

2	6	2	3	3
3	5	3	4	5
4	1	4	1	4

The given table is that for the operation Δ . By making a careful study of it, determine the identity element of the given operation.

Soln.

From the table

$$1 \Delta 2 = 1$$

$$2 \Delta 2 = 2$$

$$3\Delta 2 = 3$$

$$4 \Delta 2 = 4$$

=> Any number Δ 2 = that number

=> 2 has no effect on the given operation, and as such it is the identity element.

Q2)

*	2	3	5	7
2	3	1	2	4
3	1	4	3	2
5	7	3	5	6
7	6	2	7	4

The given table is that drawn for a certain operation, which is represented by the symbol *. By careful analysis, determine the identity element for the given operation.

Soln.

A careful study indicates the following:

- This implies that 5 had no effect on the given operation. Therefore the identity element = 5

Binary operation:

Q1) The binary operation ∇ is defined on the set of natural numbers by a ∇ b = a + b.

Determine whether or not ∇ is

- i. commutative.
- ii. associative.
- iii. Is multiplication distributive, with respect to the given operation ∇ .

Soln.

1. For the operation ∇ to be commutative, then

$$a \nabla b = b \nabla a$$

Consider L.H.S:

$$a \nabla b = a + b$$
, \Rightarrow L.H.S = $a + b$

Consider the R.H.S. Since a ∇ b = a + b

=> b ∇ a = b + a, which can also be written as a + b.

Since the R.H.S = L.H.S, then the given operation is commutative.

ii) Let a, b and $c \in N$ i.e. be member of the set of natural numbers. Then for ∇ to be associative, $(a \nabla b) \nabla c = a \nabla (b \nabla c)$.

Consider the L.H.S

i.e. $(a \nabla b) \nabla c$, solve what is inside the bracket first.

i.e.
$$(a \nabla b) = a + b$$

$$=> (a \nabla b) \nabla c = (a + b) \nabla c$$

But
$$a \nabla b = a + b$$

$$=> (a + b) \nabla c = (a + b) + c = a + b + c$$

$$\therefore$$
 L.H.S = a + b + c

Consider the R.H.S i.e.

$$a$$
∇(b ∇ c)

Solve what is inside the bracket first => $(b \nabla c) = b + c$

$$\Rightarrow$$
 a ∇ (b ∇ c) = a ∇ (b + c)

But
$$a \nabla b = a + b$$

$$=> a \nabla (b + c) = a + (b + c)$$

$$= a + b + c => R.H.S = a + b + c$$

Since L.H.S = R.H.S, then ∇ is associative.

iii) For multiplication to be distributive with respect to ∇ , then a (b ∇ c) = ab ∇ ac

Consider the L.H.S i.e. a (b ∇ c); solve what is inside the bracket first.

i.e.
$$(b \nabla c) = b + c$$

$$\Rightarrow$$
 a (b ∇ c) = a (b + c) = ab + ac

Consider the R.H.S

i.e. ab ∇ ac.

Since a ∇ b = a + b

 \Rightarrow ab ∇ ac \Rightarrow ab \Rightarrow ac

=> R.H.S = ab + ac

Since L.H.S = R.H.S, then multiplication is distributive with respect to ∇ .